Off-world Power Generation

From Bitpost wiki
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Concept

Premise

<Earth> <-clearsky-burst-laser-- <satellite>

Goal

Near-earth or Lagrange-point solar array about the size of Nebraska to power the globe.

Calculations:

  • Energy requirement of NYC: ~3000 trillion BTU in 2016 = 3000 trillion btu / 365 days = 3.4E+11 btu/hr = 1.0036680479e+11 watts = 100 GW
  • PV power stations collect more power than solar thermal power stations. They seem to average ~3 MW/km^2 (throwing out 2 ridiculous outliers).
  • Traditional single-junction cells have a maximum theoretical efficiency of 33.16% more. In reality it is around 18.7%.
  • A 65"x39" (1.64 m^2) solar panel made in 2018 produces ~320W.
  • About 48% of solar energy hitting the Earth reaches the surface. Perhaps optimistic, but we will divide by .48 to get energy-in-space vs on-earth.
  • Approximate energy absorbable by a solar panel in space: 320W / 1.64m^2 / .48% = 400W/m^2 in space
  • Approximate required size of a solar array "near Earth" (including l1) to power NYC: 100GW / 400W/m^s = 250 sq km
  • 1 out of every 811 humans on earth live in NYC, so 250 sq km dish * 811 (assuming every human uses as much energy as a New Yorker) requires a solar array of only around 200,000 sq km - the size of Nebraska - to power the globe. A physicist confirms on the back of an envelope that the area needed will be "near-(UK)-country-sized".

Conclusion

Keep it as simple as possible, but no less.

  • We need to optimize free space power transmission in lab conditions using currently-available consumer electronics.
  • We need to create a solar panel array with robotics that can self-assemble.
  • We need robotics that can precisely and safely aim laser energy to a distant target using a real-time handshaking protocol.
  • We need to determine the cheapest possible way to launch a payload from Earth and navigate it to a final stable destination (lagrange or Earth orbit).
  • We need to determine the requirements to receive laser power at an Earth-based power plant.
  • We need to crowdfund the project.

Research

Prototyping

Crowdfunding

Patrons