Off-world Power Generation: Difference between revisions
No edit summary |
No edit summary |
||
Line 34: | Line 34: | ||
* Approximate required size of a solar array "near Earth" (including l1) to power NYC: 100GW / 400W/m^s = 250 sq km | * Approximate required size of a solar array "near Earth" (including l1) to power NYC: 100GW / 400W/m^s = 250 sq km | ||
* Dan: 1 out of every 811 humans on earth live in NYC, so 250 sq km dish * 811 (assuming every human uses as much energy as a New Yorker) requires a solar array of only around 200,000 sq km - the size of Nebraska - to power the globe. | * Dan: 1 out of every 811 humans on earth live in NYC, so 250 sq km dish * 811 (assuming every human uses as much energy as a New Yorker) requires a solar array of only around 200,000 sq km - the size of Nebraska - to power the globe. | ||
[[Free Space Power Transmission Lab Gear]] |
Revision as of 01:54, 6 November 2018
Given:
- earth to moon: 238,900 miles
- there are four lagrange points that provide constant sun exposure at predictable locations
- l1 to earth/moon: 1 million miles
- the sun primarily produces visible light (not microwaves or gamma...)
- laser transmission is more efficient than microwave, except where earth's atmosphere interferes
- current status: A Gigawatt-range microwave system would weigh ~80,000 tons (prohibitively expensive) more lots more
- Solar cell efficiency
Premises:
<Earth> <-microwave-- <Earth-orbit satellite> <-laser-- <Earth's moon> <-laser-- <L1 solar array> <Earth> <-clearsky-burst-laser-- <Earth's moon> <-laser-- <L1 solar array> <Earth> <-clearsky-burst-laser-- <L1 solar array>
- <Earth> <- <Earth-orbit satellite>
Laser transmit antenna in space: 1 meter diameter per GW Receive: Several hundred meters across
- <Earth-orbit satellite> <- <Earth's moon>
- <Earth's moon> <- <Earth-Sol Lagrange-point solar array>
Targeting the energy requirement of NYC:
- Power is measured in Newton-meters per second or Joules per second or Watts.
- ~3000 trillion BTU in 2016 = 3000 trillion btu / 365 days = 3.4E+11 btu/hr = 1.0036680479e+11 watts = 100 GW
PV energy collection
- PV power stations collect more power than solar thermal power stations. They seem to average ~3 MW/km^2 (throwing out 2 ridiculous outliers).
- Traditional single-junction cells have a maximum theoretical efficiency of 33.16% more. In reality it is around 18.7%.
- A 65"x39" (1.64 m^2) solar panel made in 2018 produces ~320W.
- About 48% of solar energy hitting the Earth reaches the surface. Perhaps optimistic, but we will divide by .48 to get energy-in-space vs on-earth.
- Approximate energy absorbable by a solar panel in space: 320W / 1.64m^2 / .48% = 400W/m^2 in space
- Approximate required size of a solar array "near Earth" (including l1) to power NYC: 100GW / 400W/m^s = 250 sq km
- Dan: 1 out of every 811 humans on earth live in NYC, so 250 sq km dish * 811 (assuming every human uses as much energy as a New Yorker) requires a solar array of only around 200,000 sq km - the size of Nebraska - to power the globe.